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Abstract. Honey bees (Apis mellifera) are regularly faced with the task of navigating back
to their hives from remote food sources. They have evolved several methods to do this,
including compass-directed ‘‘vector’’ flights and the use of landmarks. If these hive-centered
mechanisms are disrupted, bees revert to searching for the hive, but the nature and efficiency
of their searching strategy have hitherto been unknown. We used harmonic radar to record the
flight paths of honey bees that were searching for their hives. Our subsequent analysis of these
paths revealed that they can be represented by a series of straight line segments that have a
scale-free, Lévy distribution with an inverse-square-law tail. We show that these results,
combined with the ‘‘no preferred direction’’ characteristic of the segments, demonstrate that
the bees were flying an optimal search pattern. Lévy movements have already been identified
in a number of other animals. Our results are the best reported example where the movements
are mostly attributable to the adoption of an optimal, scale-free searching strategy.

Key words: flight pattern; harmonic radar; honey bees; Lévy flights; optimal searching strategy; scale-
free.

INTRODUCTION

Understanding animal movement patterns in terms of

characteristic scales is a long-standing goal of ecological

research (Levin 1992). Shlesinger and Klafter (1986)

were the first to suggest that the movement patterns of

some animals may have so-called Lévy-flight character-

istics, named after Paul Pierre Lévy, the French

mathematician. Lévy flights consist of sequences of

independent, randomly oriented steps with lengths, l,

drawn at random from a probability distribution

function having a power-law tail, p(l) ; l�l where 1 ,
l , 3. Lévy flights have no characteristic scale because

the variance of p(l) is divergent and are therefore said to

be ‘‘scale free.’’ Instead, frequently occurring but

relatively short moves are punctuated by more rarely

occurring longer moves which in turn are punctuated by

even more rarely occurring even longer moves, and so

on. Over much iteration, a Lévy flight will be distributed

much farther from its starting position than a Gaussian

(i.e., Brownian) random walk of the same length. The

scale-free and super-diffusive properties of Lévy flights

can lead to advantages over Gaussian motions in search

scenarios (Bartumeus et al. 2005). Lévy flights can, for

example, increase random encounter success when

searching for scarce targets or for those with a patchy

distribution. Viswanathan et al. (1999) demonstrated

that l ¼ 2 constitutes an optimal Lévy-flight search

strategy for the location of randomly and sparsely

distributed targets i.e. the mean distance traveled before

a target is encountered, is minimized. It is assumed in

Viswanathan et al.’s analysis that the searcher is

exclusively engaged in searching, has no prior knowl-

edge of target locations and that the mean spacing

between successive targets greatly exceeds the searcher’s

perceptual range. Lévy flights with l ¼ 2 have

subsequently been found to characterize the movement

patterns of a diverse range of animals including,

microzooplankton (Bartumeus et al. 2003), albatrosses,

deer, bumblebees (Viswanathan et al. 1996, 1999),

jackals (Atkinson et al. 2002), and spider monkeys

(Romas-Fernández et al. 2004). Even human hunter-

gatherers perform Lévy flights (Brown et al. 2007).

Many central-place foragers, and foragers with

preferred feeding grounds, adopt a different stereotyp-

ical search strategy that begins at the location where the

forager initially expects to find the target, and is

comprised of loops of ever-increasing size that start

and end at this location, and are directed in different

azimuthal directions (Wehner and Srinivasan 1981 [and

references therein], Hoffman 1983, Fourcassié and

Traniello 1994). This strategy ensures that the area

where the target is expected to lie is searched most

intensively. (We can show that this strategy is optimal

for the location of a single target when the lengths of the

loops are distributed according to an inverse-square
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power-law (A. M. Reynolds, unpublished manuscript),

and that it corresponds to ‘‘looping’’ Lévy flights with l
¼ 2.) However, if the search progresses without yielding

the target, the probability that it is in the vicinity of the
start point decreases and eventually it would become

advantageous to abandon looping back to the origin,
and instead adopt a freely roaming, Lévy-flight search-
ing pattern (A. M. Reynolds, unpublished manuscript).

The presence or otherwise of Lévy-flight characteristics
in the movement patterns of central place foragers has

hitherto not been established, but the advent of scanning
harmonic radar (Riley et al. 1996, Riley and Smith 2002)

able to record the flight patterns of honey bees (Apis
mellifera) over hundreds of meters means that it is now

possible look for these characteristics.
Honey bees are regularly faced with the task of

navigating back to their hives from remote food sources,
and they have evolved several methods to do this. They

use path integration while foraging for new sources
(Collett and Collett 2000, Collett et al. 2006), and once

one is found, they travel in straight, compass-directed
‘‘vector’’ flights, to and fro, between the food source and

hive (Riley et al. 2003). Landmarks may also be used,
particularly on long flights (Collett et al. 2002).

However, impressive though these methods are, they
are not perfect. For example, the bees’ path-integration
system will always be subject to cumulative errors,

especially on long-range flights over unfamiliar terrain,
and particularly if compass information is made less

precise by heavy overcast. The strong winds and limited
visibility associated with sudden summer thunderstorms,

for example, may induce navigational errors, and the
question arises, how do honey bees find their hives when

their usual navigation methods fail to bring them home?
It has been known for 80 years that if bees’ hive-centered

navigational mechanisms are artificially disrupted, they
adopt what appear to be looping, searching flights, and

usually manage to (eventually) find their hives (Wolf
1927). In this paper, we investigate the search strategy

that they use in these circumstances. To do this, we
analyzed records of the flight paths of bees that had been

captured, artificially displaced, and then released. As
expected, the paths showed that the bees initially tended
to make long looping flights away from the release

point, as though they were searching systematically for
their hive, and our paper presents evidence that these

were ‘‘looping’’ Lévy-flight patterns.
The flight records were obtained from harmonic radar

observations (Riley et al. 1996, Riley and Smith 2002)
that were carried out in the course of recent studies of

other aspects of honey bee navigation that are described
elsewhere (Riley et al. 2003, 2005, Menzel et al. 2005).

METHODS

The experimental arena

The flight observations were made over a carefully
selected (Chittka and Geiger 1995), large area of mown

pastureland, approximately 1 3 1.5 km, where the

terrain was unusually flat and free from obstacles that

would have obscured the radar’s field of view. The radar

was set up on the southern edge of the arena, so that it

overlooked the hive and three release points (R1, R2,

and R3) set up 200 to 250 m from it (Menzel et al. 2005).

Of these, R2 lay on a linear landscape feature formed by

adjoining areas of unequally mown grass that crossed

the observation arena and passed through the position

of the hive (Menzel et al. 2005). Some brightly colored

tents were also placed in the arena to act as artificial

landmarks, for separate navigation experiments (Menzel

et al. 2005).

Empirical data and flight experiments

Honey bees were trained to a feeder that was moved

around the hive on a radius of 10 m at two to three

revolutions per day. This movement suppressed the

establishment of vector flights along any fixed compass

direction to and from the feeder. Individual honey bees

were caught when they left the feeder, fitted with a

harmonic radar transponder (Riley and Smith 2002),

and carried in an opaque tube to one of the three release

points. The bees, which had no opportunity to use their

path integration capabilities during this displacement,

were then released, and subsequent flight trajectories

were recorded using harmonic radar (for experimental

details, see Menzel et al. 2005).

A path was created from records of the bee’s position

that were normally made every 3 seconds. However, if

the bee flew through an area of radar ‘‘shadow’’ or

climbed temporarily above the horizontally scanning

radar beam, the missing interval was spanned by joining

the last recorded position to the first one to be acquired

after the interval. Analyses were based upon 60 recorded

flight patterns. Fifty-six flights terminated in the

immediate vicinity of the hive. Flight durations ranged

from 128 to 7286 s. Flight lengths ranged from 341 m to

14 187 m, and had a mean of 2153 m.

Basis of analysis

Statistical analyses were based on data that were pooled

for the three release points. The results are not signif-

icantly different from those of analyses (not reported on)

undertaken separately for each of the three release points.

We tested for the presence of Lévy-flight patterns, and to

do this, we followed Bartumeus et al. (2005) and

represented the flight paths as sequences of straight-line

movements between the points at which significant

changes in direction occurred. These representations were

then examined for the presence of Lévy-flights character-

istics. A significant change in flight direction is deemed to

have arisen when the direction of the current flight

segment (joining two successive recorded positions) and

that of the flight segment immediately following the last

deemed change in direction, is more than 908 (see Fig. 1

and caption). Statistical properties of these representa-

tions do not change significantly when the critical angle,

908, is changed by 6308. Furthermore, the statistical
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properties of these flight representations do not differ

significantly from those in which direction changes are

deemed to have arisen where the direction between two

successive flight segments (i.e., between three successive

recorded positions) is more than 908. The close corre-

spondence between these two (nonlocal and local)

representations indicates that most changes in flight

direction occur abruptly rather than through the accu-

mulation of small changes.

Only around 6% of the changes in flight direction

occurred within 5 m of any one of the tents used as

artificial landscape features, so the vast majority of turns

cannot therefore be attributed to the presence of these

landmarks.

RESULTS

Analysis of flight paths

A preliminary examination of the flight paths revealed

that the distribution of flight lengths has an inverse-

square power-law tail rather than an exponential or

Gaussian one, and that the occurrence of an inverse-

square power-law tail is not dependent on the critical
angle used to define a turning point (Fig. 2). Fig. 3 shows

that the directions of flight segments are uniformly

distributed between 08 and 3608. Our next examination
used the fact that the number of turning points occurring

within time intervals t to t þ Dt define a dimensionless
time series, u(t), and an associated running sum,

nðtÞ ¼
X

N
i¼0 uðiDtÞ:

If the values of n(t) are completely uncorrelated and

behave like ‘‘white noise,’’ then the root-mean-square

value of the running sum F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½nðtÞ � hnðtÞi�2i

q
} ta

where a¼ 0.5 and where the angular brackets denote an

ensemble average over all flights in the data set (Peng et
al. 1995). Short-term correlations in the data may cause

the initial slope of a plot of log(F )/log(t) to differ from

1/2, although it will still approach 1/2 at longer times.

FIG. 1. Representation of the flight paths. (a) An example flight path of a honey bee after being displaced and then released. A
change in flight direction is deemed to have arisen when the direction of the current flight segment (joining two successive recorded
positions) and that of the flight segment immediately following the last deemed change in direction is less than 908 (i.e., when the
interior angle of the turn is acute). The locations of these direction changes are marked (with solid circles). (b) Representation of the
flight path as straight-line movements between the positions at which changes in flight direction occurred. (c) Local determination
of the turning point using three successive recorded positions. (d) Nonlocal determination of the turning point used in the analysis.
The statistical properties of representations are not dependent on the method used to locate turning points.
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Long-term power-law correlations (Peng et al. 1995)

however, will generate a values 6¼ 0.5. Fig. 4a shows that

for our data a ¼ 0.85, and this implies that long term

power-law correlations exist in the data, or in other

words, the bee flight patterns were similar on all
temporal scales. This scale-free, Lévy-flight-like charac-

teristic is confirmed by the power-law dependence of the

ensemble-averaged power spectrum (Buldyrev et al.

1995) of the time series u(t) shown in Fig. 4b. The
spectrum is seen to approximately follow a power-law

scaling with S } f�b where b ¼ 0.7, a result that is

consistent with a¼ 0.85 because 2a¼ 1þ b (Buldyrev et

al. 1995). The power spectrum is distinctly different from

that of white noise (where b ¼ 0) which has no
temporally correlated behaviour, and is akin to ‘‘1/f ’’

noise found in scale-invariant systems with long-range

correlations. The exponents did not change significantly

when the 908 angle used to define a change in flight

direction, was altered by 6308. To investigate the

FIG. 2. The distribution, nl, of lengths, l, of ‘‘straight-line flight segments.’’ The sizes of the data collection bins are
logarithmically distributed, and numbers of straight-line flight segments have been normalized by the bin sizes. The inverse-square-
law scaling of the high tail (l. 10 m) of the distribution, l�2, obtained from a linear least-squares fit of the distribution (r2¼0.94), is
indicated. The upper inset shows the same data on log-linear scales. The lower insets show the distribution, nl, of lengths, l, of
‘‘straight-line flight segments’’ when the critical angle used to define a turning point is taken to be 608 or 1208 rather than 908 as in
the main plot.

FIG. 3. Distribution of the directions of the flight segments
in the representation of the bee flights.
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possible origin of this scale-free behavior further, we

determined the fractal dimension, D, of the flight paths.

This was done by calculating the average number, nbox,

of boxes of size lbox required to enclose the representa-

tions of the flights. A power-law relationship of the form

nbox } l�D
box would be indicative of a scale-free character-

istic with fractal dimension D. Fig. 5 shows that D¼ 1.2.

The scaling properties of the first and second halves of

the flight patterns were statistical indistinguishable, as

were those of the first and last quarters of the flight

patterns. This indicates that the scale-free characteristics

of the flight paths do not change during the course of the

flights.

Correspondence with Lévy flights

The inverse-square power-law distribution of flight

lengths is indicative of the presence of Lévy flights with l
¼ 2.0. Their presence is supported by the occurrence of

FIG. 4. The net root-mean-square value of the running sum, F, and the power spectrum of the time series u(t). (a) F is plotted as
a function of elapsed time, t, measured in seconds from the moment at which the radar first detected each released bee. The straight
line with a¼ 0.85 constitutes a linear least-squares fit to the data (correlation coefficient, r2¼ 0.90). (b) The ensemble-average of the
power spectrum S( f ) of the time series u(t). The straight line with b ¼ 0.70 constitutes a linear least-squares fit to the data
(correlation coefficient, r2 ¼ 0.90).

FIG. 5. Assessment of the fractal dimension associated with the representations of the bee flights. The average number, nbox, of
boxes of size lbox required to enclose the representations of the honey bee flights is plotted against lbox (solid circles). A power-law
relationship of the form nbox } l�D

box would be indicative of a scale-free characteristic with fractal dimension D, and here, a linear
least-squares fit shown by the straight line indicates that D¼ 1.2 (r2¼ 0.99). The inset shows the same plot for a series of simulated
Lévy flights with l¼ 2.
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long-range power-law correlations in the time series data

for turning points and by power-law scaling of the

corresponding spectra. This is because the scaling

exponents a ¼ 0.85 and b ¼ 0.7 can be produced by

finitely long Lévy flights with l¼ 2.0 (Viswanathan et al.

1996). Fig. 5 shows that the fractal scaling, D ¼ 1.2,

found from our observations, can also be reproduced by

truncated Lévy flights with l¼ 2. It can be shown that a
approaches the limit 2� l/2 and that D approaches l�
1 asymptotically for sufficiently long sequences (Viswa-

nathan et al. 1996).

DISCUSSION

Our harmonic radar data reveal that displaced bees

adopt a stereotypical search strategy when attempting to

locate their hive. The search begins at the location where

the bees initially expect to find the hive, and is comprised

of loops of ever-increasing size that start and end at this

location, and are directed in different azimuthal

directions. This strategy ensures that the area where

the target is expected to lie is searched most intensively.

We tested whether these flights represented an optimized

search pattern, and found that they had all the

characteristics of an optimal looping Lévy-flight search-

ing strategy (A. M. Reynolds, unpublished manuscript).

In this strategy, the lengths of the loops are distributed

according to an inverse-square power law, and are

directed in different azimuthal directions. If such a

search progresses without success, it eventually becomes

advantageous for the searcher to refrain from repeatedly

returning to the origin and to instead adopt an optimal

freely-roaming Lévy-flight searching strategy (Viswana-

than et al. 1999). The bees in our study did exactly this.

Freely roaming Lévy flights have been found to

characterize the movement patterns of a diverse range of

animals including, albatrosses, deer, bumble bees

(Viswanathan et al. 1996, 1999), jackals (Atkinson et

al. 2002), microzooplankton (Bartumeus et al. 2003),

spider monkeys (Ramos-Fernández et al. 2004), and

even human hunter-gathers (Brown et al. 2007). Our

results are the first reported example of optimal looping

Lévy-flight searching.

The random Lévy-looping searching strategy is clearly

less reliable than an equidistant (Archimedian) spiral

search pattern. Such a spiral search could, however, work

only if the bees’ navigation were precise enough and their

visual detection ability were reliable enough, to ensure that

all areas are explored and that no intervening regions

escape scrutiny. Should the hive be missed, there would be

no chance of encountering it a second time because the

flight path is an ever-expanding spiral. Relying on a spiral

search pattern would therefore be disastrous where

navigational and detection systems are less than ideal,

and even then, this method could be used only for short

searches before the inevitable cumulative navigational

error became too large to allow a true spiral to be

maintained. Switching from spiral to random looping

search paths has been observed in the desert isopod

Hemilepistus reaumuri when it gets lost after an excursion

from its burrow (Hoffman 1983) and in desert ants

(Cataglyphis) returning to their nest after foraging beyond

the range of their known landmark map (Wehner and

Srinivasan 1981). The same strategy is also adopted by

Cataglyphis ants if they are displaced by strong winds that

have blown them off the ground (Wehner et al. 2002).

These situations are not dissimilar to that of the displaced

honey bees in our study, and it is therefore possible that the

random looping searching patterns of desert ants, of desert

isopods, and of other central place foragers, all constitute

an optimal looping Lévy-flight searching strategy. This

possibility is the subject of an ongoing investigation.

Our analysis of the flight patterns of displaced bees

showed that their Lévy-flight searching strategy can

occasionally and temporarily be disrupted when the bees

encounter localized landscape features but that the

overall flight paths remain close to the optimal search

pattern. In particular, upon encountering a linear

landscape feature that passed through the hive position,

most bees flew repeatedly back and forth along a portion

of it before arriving at the hive, or resuming an off-

feature flight pattern which usually brought them back

to the hive. One release point, R2, was actually on the

linear feature, and most bees released from this point

flew back and forth along it before eventually traveling

far enough along it to arrive at the hive. Nevertheless the

scaling exponent characterizing the time series of turning

points, the associated power-spectra, and the fractal

dimension characterizing these flights emanating from

R2 did not differ significantly from those characterizing

two-dimensional flights beginning from the off-feature

release points, R1 and R2. These results are consistent

with the hypothesis that an inverse-square power-law

distribution of move lengths is universal; independent of

the dimensionality of the searching and robust with

respect to short-term effects, including effects on the

organisms’ behaviour and physiology (Viswanathan et

al. 1999, Bartuemeus et al. 2003). The results also

illustrate that the behavioral plasticity of the bees allows

them to adapt their random searching strategy to widely

different environmental scenarios.

Finally we note that the walking patterns of some ants

(Formica schaufussi, Pogonomyrmex occidentalis), bee-

tles (Eleodes extricata, E. obsoleta, E. hispilabris),

grasshoppers (Opeia obscura, Psoloessa delicatula, Xan-

thippus corallipes), and spider mites (Tetranychus urti-

cae) may exhibit a scale-free or fractal property (Dicke

and Burrough 1988, Fourcassié et al. 1992, Wiens et al.

1995), which is consistent with optimal Lévy-flight

searching patterns. We hope that our study will motivate

ecologists to reexamine in this context the movement

patterns of these and other insects.
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